Role of the supplementary motor area and the right premotor cortex in the coordination of bimanual finger movements.
نویسندگان
چکیده
To obtain a better understanding of the cortical representation of bimanual coordination, we measured regional cerebral blood flow (rCBF) with 15O-labeled water and positron emission tomography (PET). To detect areas with changes of rCBF during bimanual finger movements of different characteristics, we studied 12 right-handed normal volunteers. A complete session consisted of three rest scans and six scans with acoustically paced (1 Hz) bimanual, mirror, or parallel sequential finger movements. Activation of the right dorsal premotor area (PMd) extending to the posterior supplementary motor area (SMA) was significantly stronger during the parallel movements than during the mirror sequential movements (p < 0.05, at cluster level with correction for multiple comparisons). To determine whether these cortical areas truly represented bimanual coordination, a different group of nine normal volunteers was studied with a different task. Subjects performed acoustically paced (2 Hz) abduction-adduction movements of the index finger, making right only, left only, and bimanual mirror and parallel movements. Activation of the posterior SMA and right PMd was significantly greater during the parallel movements than during the bimanual mirror movements or the unimanual movements of either hand (p < 0.01, with anatomical constraint). Thus, the posterior SMA and right PMd appear to be related to the bimanual coordination of finger movements.
منابع مشابه
How the brain handles temporally uncoupled bimanual movements.
Whereas the cerebral representation of bimanual spatial coordination has been subject to prior research, the networks mediating bimanual temporal coordination are still unclear. The present study used functional imaging to investigate cerebral networks mediating temporally uncoupled bimanual finger movements. Three bimanual tasks were designed for the execution of movements with different timin...
متن کاملNeural networks for the coordination of the hands in time.
Without practice, bimanual movements can typically be performed either in phase or in antiphase. Complex temporal coordination, e.g., during movements at different frequencies with a noninteger ratio (polyrhythms), requires training. Here, we investigate the organization of the neural control systems for in-phase, antiphase, and polyrhythmic coordination using functional magnetic resonance imag...
متن کاملThe effect of handedness on cortical motor activation during simple bilateral movements.
The neuronal correlates of handedness are still poorly understood. Here we used event-related functional magnetic resonance imaging to investigate the impact of handedness on neuronal activation of the primary sensorimotor cortex, supplementary motor area and dorsal premotor cortex during simple unilateral and bilateral finger movements. In 16 right-handed and 16 left-handed individuals, we map...
متن کاملBrain areas involved in interlimb coordination: a distributed network.
Whereas behavioral studies have made significant contributions toward the identification of the principles governing the coordination of limb movements, little is known about the role of higher brain areas that are involved in interlimb coordination. Functional magnetic resonance imaging (fMRI) was used to reveal the brain areas activated during the cyclical coordination of ipsilateral wrist an...
متن کاملNeural correlates of the spontaneous phase transition during bimanual coordination.
Repetitive bimanual finger-tapping movements tend toward mirror symmetry: There is a spontaneous transition from less stable asymmetrical movement patterns to more stable symmetrical ones under frequency stress but not vice versa. During this phase transition, the interaction between the signals controlling each hand (cross talk) is expected to be prominent. To depict the regions of the brain i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 17 24 شماره
صفحات -
تاریخ انتشار 1997